The experimental data from VENUS, TOPAS, OPAL, DELPHI, ALEPH and L3 Collaborations collected from 1989 to 2003 are applied to study the quantum electrodynamics (QED) framework through the direct contact interaction term approach, using the annihilation reaction e+e−→γγ(γ). The analysis involves performing a χ2-test to detect the presence of an excited electron e*, and and evidence of non-point like behavior in the e+e− annihilation zone. The analysis yields compelling results, showing a significant signal at a confidence level of approximately 5 standard deviations. These findings suggest the existence of an excited electron with a mass of 308 ± 14 GeV and indicate the presence of a contact interaction characterized by a cutoff scale of 1253.53 ± 226 GeV. Furthermore, the interpretation of the cutoff scale result in terms of a radius of (1.57 ± 0.07) × 10−17 cm raises an intriguing possibility regarding the electron’s non-pointness.