As a linear dimensionality reduction method, nonnegative matrix factorization (NMF) has been widely used in many fields, such as machine learning and data mining. However, there are still two major drawbacks for NMF: (a) NMF can only perform semantic factorization in Euclidean space, and it fails to discover the intrinsic geometrical structure of high-dimensional data distribution. (b) NMF suffers from noisy data, which are commonly encountered in real-world applications. To address these issues, in this paper, we present a new robust structure preserving nonnegative matrix factorization (RSPNMF) framework. In RSPNMF, a local affinity graph and a distant repulsion graph are constructed to encode the geometrical information, and noisy data influence is alleviated by characterizing the data reconstruction term of NMF withl2,1-norm instead ofl2-norm. With incorporation of the local and distant structure preservation regularization term into the robust NMF framework, our algorithm can discover a low-dimensional embedding subspace with the nature of structure preservation. RSPNMF is formulated as an optimization problem and solved by an effective iterative multiplicative update algorithm. Experimental results on some facial image datasets clustering show significant performance improvement of RSPNMF in comparison with the state-of-the-art algorithms.