2022
DOI: 10.1177/09596518221082857
|View full text |Cite
|
Sign up to set email alerts
|

Manifold semi-supervised learning for aluminum electrolysis temperature identification based on regularized hierarchical extreme learning machine

Abstract: The aim of this article is to develop a soft approach for a real-time cell temperature prediction in the aluminum electrolysis reduction. Under the limited labeled data constraint, Laplacian semi-supervised learning methods, which can fully utilize the underlying structure of the data distribution and further extract information contained in all available data, has recently received extensive attention in the field of soft sensor modeling. Since the Laplacian underlying manifold is a constant, it remains a cha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 34 publications
0
0
0
Order By: Relevance