Conducting polymers have received increasing attention in both fundamental research and various fields of application in recent decades, ranging in use from biomaterials to renewable energy storage devices. Processing of conducting polymers into fibrillar structures through spinning has provided some unique capabilities to their final applications. Compared with non fibrillar forms, conducting polymer fibres are expected to display improved properties arising mainly from their low dimensions, well-oriented polymer chains, light weight and large surface area to volume ratio. Spinning methods have been employed effectively to produce technological conducting fibres from nanoscale to hundreds of micrometre sizes with controlled properties. This review considers the history, categories, the latest research and development, pristine and composite conducting polymer fibres and current/future applications of them while focus on spinning methods related to conducting polymer fibres. Inherently conducting polymers have received increasing attention in both fundamental research and various fields of application in recent decades, ranging in use from biomaterials to renewable energy storage devices. Processing of conducting polymers into fibrillar structures through spinning has provided some unique capabilities to their final applications. Compared with non fibrillar forms, conducting polymer fibres are expected to display improved properties arising mainly from their low dimensions, well-oriented polymer chains, light weight and large surface area to volume ratio. Spinning methods have been employed effectively to produce technological conducting fibres from nanoscale to hundreds of micrometre sizes with controlled properties. This review considers the history, categories, the latest research and development, pristine and composite conducting polymer fibres and current/future of applications of them while focus on spinning methods related to conducting polymer fibres.
Disciplines
Engineering | Physical Sciences and Mathematics