2019
DOI: 10.1002/cbic.201800642
|View full text |Cite
|
Sign up to set email alerts
|

Manipulating DNA G‐Quadruplex Structures by Using Guanosine Analogues

Abstract: The ability to control the folding topology of DNA G‐quadruplexes allows for rational design of quadruplex‐based scaffolds for potential use in various therapeutic and technological applications. By exploiting the distinct conformational properties of some base‐ and sugar‐modified guanosine surrogates, conformational transitions can be induced through their judicious incorporation at specific sites in the quadruplex core. Changes may involve tetrad polarity inversions with conservation of the global fold or co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
22
0
2

Year Published

2019
2019
2021
2021

Publication Types

Select...
6

Relationship

3
3

Authors

Journals

citations
Cited by 28 publications
(24 citation statements)
references
References 63 publications
0
22
0
2
Order By: Relevance
“…Approaches for a versatile and rational G4 design are expected to heavily support many bio‐ and nanotechnological G4 applications. A powerful and efficient strategy for the directed manipulation of the topology for a given G4‐forming sequence involves the deliberate incorporation of G‐analogues . Here, the glycosidic torsion angle plays a major role as it is correlated with strand orientation and tetrad polarity.…”
Section: Introductionmentioning
confidence: 73%
See 1 more Smart Citation
“…Approaches for a versatile and rational G4 design are expected to heavily support many bio‐ and nanotechnological G4 applications. A powerful and efficient strategy for the directed manipulation of the topology for a given G4‐forming sequence involves the deliberate incorporation of G‐analogues . Here, the glycosidic torsion angle plays a major role as it is correlated with strand orientation and tetrad polarity.…”
Section: Introductionmentioning
confidence: 73%
“…A powerful and efficient strategy for the directed manipulation of the topology for a given G4-forming sequence involves the deliberate incorporation of G-analogues. [30] Here, the glycosidic torsion angle plays a major role as it is correlated with strand orientation and tetrad polarity. Apart from a complete disruption of the quadruplex fold, an anti to syn or syn to anti transition is necessarily accompanied by an inversion of either the tetrad polarity or the G-tract orientation.…”
Section: Introductionmentioning
confidence: 99%
“…[1] Although rules have emerged that correlate sequences to the stability of particular G4 topological features, [2] reliable predictions of G4 conformations are challenging because of our still limited knowledge of the various interactions that determine G4 folding.D eliberately engineering specific folds will therefore not only provide an expanded collection of G-quadruplex scaffolds to be used for the increasing number of technological applications,f or example,a sa ptamers or parts of nanoarchitectures, [3,4] but will also contribute to ab etter understanding of the forces acting along the G4 folding pathway. [5] Thes sQ oligomer d(GCGTG 3 TCAG 3 TG 3 TG 3 CTCA) with 5'-a nd 3'-overhangs and one three-nucleotide (3-nt) as well as two 1-nt intervening sequences between its four G-tracts is based on at runcated variant of the guanine-rich strand of the nuclease hypersensitive element III 1 in the c-MYC promoter.T he latter has been shown to fold into av ery robust parallel G-quadruplex with three short pro-peller-type loops. [6] However,the 3-nt intervening sequence in ssQ is expected to also allow formation of al ateral loop to yield an ovel (3+ +1) hybrid topology with af irst lateral followed by two propeller loops ( Figure 1).…”
mentioning
confidence: 99%
“…Ihre bemerkenswerte Strukturpolymorphie leitet sich vom Looptyp der G-Trakt-verbindenden Sequenzen, der relativen Orientierung der G-Trakte zueinander sowie von der Abfolge glykosidischer Konformationen entlang der G-Trakte ab. [5] Das Oligomer ssQ d(GCGTG 3 TCAG 3 TG 3 TG 3 CTCA) mit Überhängen am 5'-u nd 3'-Ende und einer Drei-Nukleotid (3-nt)-sowie zwei Ein-Nukleotid-Sequenzen zwischen den G-Trakten beruht auf einer verkürzten Va riante des Guanin-reichen Stranges im Nuklease-hypersensitiven Element III 1 des c-MYC-Promotors.D ieser bildet eine stabile, parallele G-Quadruplexstruktur mit drei kurzen Propellerloops. Ein gezieltes Design von spezifischen Formen würde das Repertoire an G-Quadruplexstrukturen erweitern, die z.…”
unclassified
“…Es würde darüber hinaus aber auch helfen, die beim Faltungsprozess wirkenden Kräfte besser zu verstehen. [5] Das Oligomer ssQ d(GCGTG 3 TCAG 3 TG 3 TG 3 CTCA) mit Überhängen am 5'-u nd 3'-Ende und einer Drei-Nukleotid (3-nt)-sowie zwei Ein-Nukleotid-Sequenzen zwischen den G-Trakten beruht auf einer verkürzten Va riante des Guanin-reichen Stranges im Nuklease-hypersensitiven Element III 1 des c-MYC-Promotors.D ieser bildet eine stabile, parallele G-Quadruplexstruktur mit drei kurzen Propellerloops. [6] Der 3-nt-Loop im ssQ-Quadruplex sollte allerdings auch die Bildung eines Lateralloops ermçglichen, was dann in einer neuen (3+ +1)-Hybridstruktur mit einem Lateralloop, gefolgt von zwei Propellerloops,r esultieren würde (Abbildung 1).…”
unclassified