In natural environments, light intensities and visual contrasts vary widely, yet neurons have a limited response range for encoding them. Neurons accomplish that by flexibly adjusting their dynamic range to the statistics of the environment via contrast normalization. The effect of contrast normalization is usually measured as a reduction of neural signal amplitudes, but whether it influences response dynamics is unknown. Here, we show that contrast normalization in visual interneurons of Drosophila melanogaster not only suppresses the amplitude but also alters the dynamics of responses when a dynamic surround is present. We present a simple model that qualitatively reproduces the simultaneous effect of the visual surround on the response amplitude and temporal dynamics by altering the cells’ input resistance and, thus, their membrane time constant. In conclusion, single-cell filtering properties as derived from artificial stimulus protocols like white-noise stimulation cannot be transferred one-to-one to predict responses under natural conditions.