The exceptional point (EP) is the critical phase transition point in parity−time (PT) symmetry systems, offering many unique physical phenomena, such as a chiral response. Achieving chiral EP in practical applications has been challenging due to the delicate balance required between gain and loss and complicated fabrication, limiting both working band and device miniaturization. Here, we proposed a nonlocal metasurface featuring orthogonal gold nanorods, where loss modulation is achieved through rod size and lattice pitch. By tuning the coupling strength, we experimentally observed the PT symmetry phase transition and chiral EP in the telecom-band. The experimental and simulated circular conversion dichroism at EP reach 0.79 and 0.99, respectively. We also demonstrated an abrupt phase flip of a specific component near EP theoretically. This work provides a feasible scheme for exploring EP in polarized space within the telecom-band, which may find applications in polarization control, wavelength division multiplexing, ultrasensitive sensing, imaging, etc.