Schulze and ranked-pairs elections have received much attention recently, and the former has quickly become a quite widely used election system. For many cases these systems have been proven resistant to bribery, control, or manipulation, with ranked pairs being particularly praised for being NP-hard for all three of those. Nonetheless, the present paper shows that with respect to the number of candidates, Schulze and ranked-pairs elections are fixed-parameter tractable to bribe, control, and manipulate: we obtain uniform, polynomial-time algorithms whose degree does not depend on the number of candidates. We also provide such algorithms for some weighted variants of these problems.