Metalens, a metasurface with a focusing phase, has been the focus of research due to its immense potential for use in imaging and display technology. Traditional lens and optical imaging systems rely on phase accumulation, however metalens with subwavelength structures provide a disruptive path for miniaturized optical imaging systems by allowing unfettered modulation of incident light's phase and amplitude. Recently, extensive efforts have been devoted to exploring new design strategies, new functionalities, and possible applications. This paper reviews the development, principle, classification, and research status of metalens. In particular, this review focuses on the progress and challenges of improving imaging quality and expanding imaging diversity, including improvements of resolution, enhancement of depth of field, extension of field of view, and achromatism. Lastly, the prospects of metalens in the future display are summarized, and the application potentials of metalens in novel 3D display, intelligent and bionic display, as well as nano‐pixelate light‐emitting display (NLED) are emphasized.