The head-direction (HD) signal is believed to originate in the dorsal tegmental nucleus (DTN) and lesions to this structure have been shown to disrupt HD cell firing in other areas along the HD cell circuit. To investigate the role of the DTN in spatial navigation, rats with bilateral, electrolytic (Experiment 1), or neurotoxic (Experiment 2) lesions to the DTN were compared with sham controls on two tasks that differed in difficulty and could be solved using directional heading. Rats were first trained on a direction problem in a water T maze where they learned to travel either east or west from two locations in the experimental room. DTN-lesioned rats were impaired relative to sham controls, both early in training, on the first block of eight trials, and on the total trials taken to reach criterion. In the food-foraging task, rats were trained to leave a home cage at the periphery of a circular table, find food in the center of the table and return to the home cage. Again, DTN-lesioned rats were impaired relative to sham rats, making more errors on the return component of the foraging trip. These data extend previous cell-recording studies and behavioral tests in which rats with electrolytic DTN lesions were used, and they demonstrate the importance of the direction system to spatial learning.