The photoexcited charge separation efficiency of photocatalysts is generally considered as the key factor for enhancement of their photocatalytic activity, and sometimes, their photoabsorption capability and interfacial reaction kinetics play a key part, but the role of interfacial affinity of photocatalysts with substrates was rarely researched systematically. Herein, nitrogen vacancy-modified polymeric carbon nitride porous nanotubes (PCNpts) were simply synthesized, using tartaric acid as a crosslinking and corrosion agent, and exhibit a remarkable increment in surface area, wettability, photoabsorption and charge separation capability, and photocatalytic activity in water splitting to produce H 2 , but, interestingly, exhibit substrate-dependent variation of photoactivity in contaminant degradation, compared with bulk PCN. More interestingly, the interfacial affinity of PCNpts and PCN with contaminants and H 2 O, rather than photoabsorption and charge separation capability, is confirmed to dominate their photoactivity.