Aims/hypothesis: Gestational diabetes mellitus (GDM) and type 2 diabetes share a common pathophysiological background, including beta cell dysfunction and insulin resistance. In addition, women with GDM are at increased risk of developing type 2 diabetes later in life. Our aim was to investigate whether, like type 2 diabetes, GDM has a genetic predisposition by studying five common polymorphisms in four candidate genes that have previously been associated with type 2 diabetes. Materials and methods: We studied 1,777 unrelated Scandinavian women (588 with GDM and 1,189 pregnant non-diabetic controls) for polymorphisms in the genes encoding potassium inwardly rectifying channel subfamily J, member 11 (KCNJ11 E23K), insulin receptor substrate 1 (IRS1 G972R), uncoupling protein 2 (UCP2 −866G→A) and calpain 10 (CAPN10 SNP43 and SNP44). Results: The EE, EK and KK genotype frequencies of the KCNJ11 E23K polymorphism differed significantly between GDM and control women (31.5, 52.7 and 15.8% vs 37.3, 48.8 and 13.9%, respectively; p=0.050). In addition, the frequency of the K allele was increased in women with GDM (odds ratio [OR]=1.17, 95% CI 1.02−1.35; p=0.027), and this effect was greater under a dominant model (KK/EK vs EE) (OR=1.3, 95% CI 1.05−1.60; p=0.016). Analysis of the IRS1 G972R polymorphism showed that RR homozygosity was found exclusively in women with GDM (91.0, 8.3 and 0.7% vs 90.7,9.3 and 0.0% for GG, GR and RR genotypes, respectively; p=0.014). The genotype and allele frequencies of the other polymorphisms studied were not statistically different between the GDM and control women. Conclusions/interpretation: The E23K polymorphism of KCNJ11 seems to predispose to GDM in Scandinavian women.