We present multitechnique U-Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty-five Th-corrected 206 Pb/ 238 U zircon dates produced at two independent laboratories using chemical abrasion-isotope dilution-thermal ionisation mass spectrometry (CA-ID-TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206 Pb/ 238 U dates from laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA-ID-TIMS date to within < 1.5%. Solution multi-collector ICP-MS (MC-ICP-MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176 Hf/ 177 Hf of 0.283050 ± 17 (2s, n = 10), corresponding to a eHf 0 of +9.3. Hafnium isotopic measurements from two LA-ICP-MS laboratories are in agreement with the solution MC-ICP-MS value. The reproducibility of 206 Pb/ 238 U and 176 Hf/ 177 Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U-Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176 Hf/ 177 Hf.