Virus-like
particles (VLPs) constitute a promising platform in
vaccine development and targeted drug delivery. To date, most applications
use simple nonenveloped VLPs as human papillomavirus or hepatitis
B vaccines, even though the envelope is known to be critical to retain
the native protein folding and biological function. Here, we present
tagged enveloped VLPs (TagE-VLPs) as a valuable strategy for the downstream
processing and monitoring of the in vivo production of specific-site-functionalized
enveloped influenza VLPs. This two-step procedure allows bioorthogonal
functionalization of azide-tagged nascent influenza type A hemagglutinin
proteins in the envelope of VLPs through a strain-promoted [3 + 2]
alkyne–azide cycloaddition reaction. Importantly, labeling
does not influence VLP production and allows for construction of functionalized
VLPs without deleterious effects on their biological function. Refined
discrimination and separation between VLP and baculovirus, the major
impurity of the process, is achieved when this technique is combined
with flow cytometry analysis, as demonstrated by atomic force microscopy.
TagE-VLPs is a versatile tool broadly applicable to the production,
monitoring, and purification of functionalized enveloped VLPs for
vaccine design trial runs, targeted drug delivery, and molecular imaging.