Filament winding is a widely used out-of-autoclave manufacturing technique for producing continuous fiber-reinforced thermoplastic composites. This study focuses on optimizing key filament winding process parameters, including heater temperature, roller pressure, and winding speed, to produce thermoplastic composites. Using Box–Behnken response surface methodology (RSM), the study investigates the effects of these parameters on the compressive load of glass fiber-reinforced polypropylene (GF/PP) and polyphenylene sulfide (GF/PPS) composite cylinders. Mathematical models were developed to quantify the impact of each parameter and optimal processing conditions were identified across a wide temperature range, enhancing both manufacturing efficiency and the overall quality of the composites. This study demonstrates the potential of thermoplastic filament winding as a cost-effective and time-efficient alternative to conventional methods, addressing the growing demand for lightweight, high-performance, out-of-autoclave composites in industries such as aerospace, automotive, and energy. The optimized process significantly improved the performance and reliability of filament winding for various thermoplastic applications, offering potential benefits for industrial, aerospace, and other advanced sectors. The results indicate that GF/PPS composites achieved a compressive load of 3356.99 N, whereas GF/PP composites reached 2946.04 N under optimized conditions. It was also revealed that operating at elevated temperatures and reduced pressure levels enhances the quality of GF/PPS composites, while for GF/PP composites, maintaining lower temperature and pressure values is crucial for maximizing strength.