Tritium extraction is one of the key open issues toward the development of the WCLL BB (Water-Cooled Lithium–Lead Breeding Blanket) of EU DEMO reactors, and different technologies have been proposed to address it. Among them, the Permeator Against Vacuum (PAV) has promising features, but it has never been tested in a relevant environment. This work presents the first experimental results ever obtained for a PAV mock-up. The experiments were carried out at ENEA Brasimone R.C. with the TRIEX-II facility on a mock-up characterized by a shell and tube configuration and using niobium as a membrane material. The experimental campaign was carried out with LiPb flowing at about 450 °C and 1.2 kg/s, while the hydrogen partial pressure was varied in the range 170–360 Pa. The characterization of the PAV performance was conducted by measuring the hydrogen partial pressure drop across the mock-up and the hydrogen permeated flux through a leak detector calibrated with an external hydrogen calibration cylinder. Moreover, the permeated flux was confirmed by a pressurization test performed measuring the pressure increase on the vacuum side of the PAV. The results constitute the first verification of the possibility to operate a PAV in flowing LiPb and to quantify its capabilities.