Artificial intelligence algorithms, with roots extending into the past but experiencing a resurgence and evolution in recent years due to their superiority over traditional methods and contributions to human capabilities, have begun to make their presence felt in the field of pediatric rheumatology. In the ever-evolving realm of pediatric rheumatology, there have been incremental advancements supported by artificial intelligence in understanding and stratifying diseases, developing biomarkers, refining visual analyses, and facilitating individualized treatment approaches. However, like in many other domains, these strides have yet to gain clinical applicability and validation, and ethical issues remain unresolved. Furthermore, mastering different and novel terminologies appears challenging for clinicians. This review aims to provide a comprehensive overview of the current literature, categorizing algorithms and their applications, thus offering a fresh perspective on the nascent relationship between pediatric rheumatology and artificial intelligence, highlighting both its advancements and constraints.