Many-body effects in porphyrin-like transition metal complexes embedded in graphene
Andrew Allerdt,
Hasnain Hafiz,
Bernardo Barbiellini
et al.
Abstract:We introduce a new computational method to study porphyrin-like transition metal complexes, bridging density functional theory and exact many-body techniques, such as the density matrix renormalization group (DMRG). We first derive a multi-orbital Anderson impurity Hamiltonian starting from first principles considerations that qualitatively reproduce GGA+U results when ignoring inter-orbital Coulomb repulsion U and Hund exchange J. An exact canonical transformation is used to reduce the dimensionality of the p… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.