In the house allocation problem with lower and upper quotas, we are given a set of applicants and a set of projects. Each applicant has a strictly ordered preference list over the projects, while the projects are equipped with a lower and an upper quota. A feasible matching assigns the applicants to the projects in such a way that a project is either matched to no applicant or to a number of applicants between its lower and upper quota. In this model we study two classic optimality concepts: Pareto optimality and popularity. We show that finding a popular matching is hard even if the maximum lower quota is 2 and that finding a perfect Pareto optimal matching, verifying Pareto optimality, and verifying popularity are all NP-complete even if the maximum lower quota is 3. We complement the last three negative results by showing that the problems become polynomial-time solvable when the maximum lower quota is 2, thereby answering two open questions of Cechlárová and Fleiner [17]. Finally, we also study the parameterized complexity of all four mentioned problems.