The problem of lossy transmission of correlated sources over memoryless two-way channels (TWCs) is considered. The objective is to develop a robust low delay and low complexity source-channel coding scheme without using error correction. A simple full-duplex channel optimized scalar quantization (COSQ) scheme that implicitly mitigates TWC interference is designed. Numerical results for sending Gaussian bivariate sources over binary additive-noise TWCs with either additive or multiplicative user interference show that, in terms of signal-to-distortion ratio performance, the proposed full-duplex COSQ scheme compares favourably with half-duplex COSQ.