DOI: 10.11606/d.9.2019.tde-04022019-170221
|View full text |Cite
|
Sign up to set email alerts
|

Mapeamento de <i>hotspots</i> de transmissão de malária utilizando geolocalização de pacientes

Abstract: AgradecimentosAgradeço a minha família pois, sem eles, nada disso seria possível. Minha mãe, por sempre se preocupar com a minha sanidade mental e física e, meu pai, por ter providenciado todo o suporte necessário durante esse período. Fernanda que, através de discussões científicas e políticas me ajudou a ver o mundo de uma forma diferente e, Camila, por sempre desafiar a minha mente com conhecimentos esquecidos do ensino médio. O irmão canino mais novo, Johnny também merece os agradecimentos, por escutar min… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…from March 2020 to November 2021. The history of patients infected with COVID-19, as soon as they were geolocated, allowed to obtain the hotspots: these are regions that require greater attention from the public health and epidemiological surveillance agencies (CARDOZO, 2018). The task of finding these regions, through geolocated data from the addresses of infected patients and by applying Kernel density estimation techniques or point clustering (heat map) is important because regions with greater densities can represent shared infection sites.…”
Section: Resultsmentioning
confidence: 99%
“…from March 2020 to November 2021. The history of patients infected with COVID-19, as soon as they were geolocated, allowed to obtain the hotspots: these are regions that require greater attention from the public health and epidemiological surveillance agencies (CARDOZO, 2018). The task of finding these regions, through geolocated data from the addresses of infected patients and by applying Kernel density estimation techniques or point clustering (heat map) is important because regions with greater densities can represent shared infection sites.…”
Section: Resultsmentioning
confidence: 99%