Coarse woody debris (CWD, parts of dead trees) is an important factor in forest management, given its roles in promoting local biodiversity and unique microhabitats, as well as providing carbon storage and fire fuel. However, parties interested in monitoring CWD abundance lack accurate methods to measure CWD accurately and extensively. Here, we demonstrate a novel strategy for mapping CWD volume (m 3 ) across a 4300-hectare study area in the boreal forest of Alberta, Canada using optical imagery and an infra-canopy vegetation-index layer derived from multispectral aerial LiDAR. Our models predicted CWD volume with a coefficient of determination (R2) value of 0.62 compared to field data, and a root-mean square error (RMSE) of 0.224 m 3 /100 m 2 . Models using multispectral LiDAR data in addition to image-analysis data performed with up to 12% lower RMSE than models using exclusively image-analysis layers. Site managers and researchers requiring reliable and comprehensive maps of CWD volume may benefit from the presented workflow, which aims to streamline the process of CWD measurement. As multispectral LiDAR radiometric calibration routines are developed and standardized, we expect future studies to benefit increasingly more from such products for CWD detection underneath canopy cover. 3 of 28 quantify CWD volume based on field data and we believed that ML data would be beneficial to predictions on occluded areas. Variables we predicted would have a relationship with occurrence and quantities of CWD include the height of trees, active and passive vegetation indices, canopy cover, presence of visible CWD, shadows, water, and wetlands. We tested our models both in a calibration area, where the models were developed, and in a verification area 4 km from the calibration area, and compared the best models using ML variables with the best models without ML variables to assess the impact of infra-canopy information on volume estimation accuracy. We then generated a series of CWD-volume maps designed to illustrate the utility of our approach to aid forest restoration efforts and fire-hazard assessments.