2014
DOI: 10.1080/15230406.2014.888958
|View full text |Cite|
|
Sign up to set email alerts
|

Mapping collective human activity in an urban environment based on mobile phone data

Abstract: Identifying and characterizing variations of human activity -specifically changes in intensity and similarity -in urban environments provide insights into the social component of those eminently complex systems. Using large volumes of usergenerated mobile phone data, we derive mobile communication profiles that we use as a proxy for the collective human activity. In this article, geocomputational methods and geovisual analytics such as self-organizing maps (SOM) are used to explore the variations of these prof… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
32
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 60 publications
(34 citation statements)
references
References 47 publications
(52 reference statements)
0
32
0
2
Order By: Relevance
“…Phone based positioning does not depend on a specific application platform, such as Twitter or Foursquare/Swarm. However, obtaining a cohesive set of spatio-temporal locations from phone records across multiple countries appears to be challenging, given that most studies that analyze mobility from phone records are geographically limited to the city level [60,61] or country level [62], with only a few exceptions that extend beyond national or continental boundaries [63].…”
Section: Summary and Discussionmentioning
confidence: 99%
“…Phone based positioning does not depend on a specific application platform, such as Twitter or Foursquare/Swarm. However, obtaining a cohesive set of spatio-temporal locations from phone records across multiple countries appears to be challenging, given that most studies that analyze mobility from phone records are geographically limited to the city level [60,61] or country level [62], with only a few exceptions that extend beyond national or continental boundaries [63].…”
Section: Summary and Discussionmentioning
confidence: 99%
“…Als die individuen gegeolokaliseerd zijn, lijkt de projectie van de community in de ruimte op de hoger genoemde "interactiegebieden". Ondanks hun beperkingen is al gebleken dat deze nieuwe methodes en data effectieve instrumenten zijn voor stadsanalyse, -visualisatie en -planning [zie bijvoorbeeld Sagl et al, 2014;Hao et al, 2015]. Op basis van gegevens uit de laatste volkstelling (verhuizingen en woonwerkverplaatsingen) en de telefonische contacten wil dit artikel tonen welke plaatsen nauw verbonden zijn met elkaar in en rond Brussel en zo de "interactiebassins" in kaart brengen aan de hand van een methode voor de detectie van communities (Louvain method -zie punt 2).…”
Section: Note De L'auteurunclassified
“…Many data sets in this context are highly relevant for transport research, as they sense the flows of people and goods in space via operating systems [40], mobile phone network [41], Bluetooth [42], or social media [43]. These data sets are conceptually different from sampled data, which have usually been used in transport models so far.…”
Section: (Geospatial) Data Typesmentioning
confidence: 99%