We used the intergenic spacer sequences of the 5S ribosomal RNA genes (5S rDNA) to obtain insights into the genomic origin of putative amphidiploid/tetraploid species with 2n = 48 and their descendants in Nicotiana . Amplification of the spacer sequences and subsequent multiple alignment using the consensus sequences from each species, showed that two Australian species shared common large deletions, suggesting that the origin of the 5S rDNA is closely related in these species. Comparison of the spacer sequences with those from diploid (2n = 24) Nicotiana species made it possible to detect some groups consisting of the sequences from the 2n = 24 and 2n = 48 level species. Chromosomal localizations of the 5S rDNA arrays were similar in most groups. The relationships suggested by the 5S rDNA were also assessed at the genome level by using genomic in situ hybridization.We showed that the grouping based on the 5S rDNA spacer sequence reflects high genomic homology between 2n = 24 and 2n = 48 level species. As a result, the putative polyploid species such as N. debneyi , N. quadrivalvis , and N. africana were suggested to involve the close relatives of the diploid species such as N. glauca , N. obtusifolia and N. sylvestris , and N. langsdorffii , respectively, in their speciation. Our results are generally in agreement with the relationships previously suggested by morphological and cytogenetic observations, and some novel relationships were also revealed.