Mycoplasma pneumoniae belongs to the mollicutes, a group of bacteria that have strongly reduced genomes but that are nevertheless capable of independent life. With only three transcription factors, the regulatory features of these bacteria are very limited. Thus, posttranslational regulation might be important for M. pneumoniae. In addition to the highly specific HPr kinase, the M. pneumoniae prkC gene encodes the serine/ threonine protein kinase C. In order to study the function(s) of this kinase, we isolated an M. pneumoniae mutant affected in PrkC. This mutation resulted in nonadherent growth and loss of cytotoxicity. Examination of the phosphorylation profile of the prkC mutant suggested that phosphorylation of cytadherence proteins was affected by the loss of this kinase. In contrast, inactivation of the prpC gene affecting the protein phosphatase that antagonizes PrkC-dependent phosphorylation resulted in more intensive phosphorylation of the cytadherence proteins HMW1 and HMW3 of the major adhesin P1 and of the surface protein MPN474. Moreover, loss of PrkC affects not only the phosphorylation state of the cytadherence proteins but also their intracellular accumulation. However, the expression of the corresponding genes was not affected by PrkC, suggesting that PrkC-dependent phosphorylation results in stabilization of the cytadherence proteins. The HMW proteins and P1 are part of the so-called terminal organelle of M. pneumoniae that is involved in gliding motility, cell division, and adhesion to host epithelial tissues. Our observations suggest that the posttranslational modification of cytadherence proteins by PrkC is essential for the development and function of the M. pneumoniae terminal organelle.Mycoplasma pneumoniae belongs to the mollicutes, i.e., cell wall-less bacteria. These organisms are among the smallest selfreplicating living beings capable of a host-independent existence. M. pneumoniae is a pathogenic bacterium that causes atypical pneumonia and extrapulmonary infections, such as autoimmune disorders, asthma, and arthritis (4,32,34).M. pneumoniae and its close relative Mycoplasma genitalium have recently attracted much attention, not only with respect to the elucidation of pathogenicity mechanisms but also because the small genomes of these bacteria define the lower limit of naturally existing independent life. The analysis of the minimal gene complement of M. pneumoniae and M. genitalium is one of the sources of synthetic biology, a new discipline of biology (12, 13).However, life is not static and not determined only by a defined set of genes. A very important feature is the control of biological activities in response to changing environmental conditions. Only this control enables organisms to adapt to different habitats and to survive suboptimal conditions. In M. pneumoniae, the regulatory potential seems to be rather limited. In bacteria, regulation of gene expression is achieved mainly at the level of transcription, by alternative sigma factors of the RNA polymerase, by transcriptio...