Extensive use of groundwater is a result of the growing population; in relation to this, studies have focused on groundwater conservation measures. This study identified groundwater artificial recharge zones (GWARZs) in the upper Manimuktha sub-basin through the application of remote sensing and GIS. A spatial analysis using the analytical hierarchical process (AHP) and weighted overlay analysis (WOA) was employed by integrating several spatial thematic layers such as geology, geomorphology, aquifer thickness, lineament density (LD), drainage density (DD), soil, slope, rainfall, and land use/land cover (LULC) in order to classify the GWARZs. The geomorphology along with lithology, higher aquifer thickness, low lineament densities, higher drainage densities, and gentle slope regions, were identified as suitable areas for artificial recharge zones. The study area was divided up into five classifications based on the integration analysis: excellent (41.1 km2), good (150.6 km2), moderate (123.9 km2), bad (125.5 km2), and very poor (57.7 km2). Excellent and good GWARZs were identified in the eastern and central regions of the study area. The final outcomes of this research were evaluated with seasonal electrical conductivity (EC) variations. The majority of samples with minor seasonal EC variations were observed in the excellent and good GWARZ categories. The results showed that the spatial analysis tool is useful for GWARZ delineation and sustainably managing groundwater resources.