Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Soil salinity is considered one of the biggest constraints to crop production, particularly in arid and semi-arid regions affected by recurrent and long periods of drought, where high salinity levels severely impact plant stress and consequently agricultural production. Climate change accelerates soil salinization, driven by factors such as soil conditions, land use/land cover changes, and water deficits, over extensive spatial and temporal scales. Continuous monitoring of areas at risk of salinization plays a critical role in supporting effective land management and enhancing agricultural production. For these purposes, this work aims to propose a spatiotemporal method for monitoring soil salinization using spectral indices derived from Earth observation data. The proposed approach was tested in the Zaghouan Region in northeastern Tunisia, a region where soils are characterized by alarming levels of salinization. To address this concern, remote sensing techniques were applied for the analysis of satellite imagery generated from Landsat 5, Landsat 8, and Landsat 9 missions. A comprehensive field survey complemented this approach, involving the collection of 229 geo-referenced soil samples. These samples were representative of distinct soil salinity classes, including non-saline, slightly saline, moderately saline, strongly saline, and very strongly saline soils. Soil salinity modeling using Landsat-8 OLI data revealed that the SI-5 index provided the most accurate predictions, with an R2 of 0.67 and an RMSE of 0.12 dS/m. By 2023, 42.3% of the study area was classified as strongly or very strongly saline, indicating a significant increase in salinity over time. This rise in salinity corresponds to notable land use and land cover (LULC) changes, as 55.9% of the study area experienced LULC shifts between 2000 and 2023. A decline in vegetation cover coincided with increasing salinity, showing an inverse relationship between these factors. Additionally, the results highlight the complex interplay among these variables demonstrating that soil salinity levels are significantly impacted by climate change indicators, with a negative correlation between precipitation and salinity (r = −0.85, p < 0.001). Recognizing the interconnections between soil salinity, LULC changes, and climate variables is essential for developing comprehensive strategies, such as targeted irrigation practices and land suitability assessments. Earth observation and remote sensing play a critical role in enabling more sustainable and effective soil management in response to both human activities and climate-induced changes.
Soil salinity is considered one of the biggest constraints to crop production, particularly in arid and semi-arid regions affected by recurrent and long periods of drought, where high salinity levels severely impact plant stress and consequently agricultural production. Climate change accelerates soil salinization, driven by factors such as soil conditions, land use/land cover changes, and water deficits, over extensive spatial and temporal scales. Continuous monitoring of areas at risk of salinization plays a critical role in supporting effective land management and enhancing agricultural production. For these purposes, this work aims to propose a spatiotemporal method for monitoring soil salinization using spectral indices derived from Earth observation data. The proposed approach was tested in the Zaghouan Region in northeastern Tunisia, a region where soils are characterized by alarming levels of salinization. To address this concern, remote sensing techniques were applied for the analysis of satellite imagery generated from Landsat 5, Landsat 8, and Landsat 9 missions. A comprehensive field survey complemented this approach, involving the collection of 229 geo-referenced soil samples. These samples were representative of distinct soil salinity classes, including non-saline, slightly saline, moderately saline, strongly saline, and very strongly saline soils. Soil salinity modeling using Landsat-8 OLI data revealed that the SI-5 index provided the most accurate predictions, with an R2 of 0.67 and an RMSE of 0.12 dS/m. By 2023, 42.3% of the study area was classified as strongly or very strongly saline, indicating a significant increase in salinity over time. This rise in salinity corresponds to notable land use and land cover (LULC) changes, as 55.9% of the study area experienced LULC shifts between 2000 and 2023. A decline in vegetation cover coincided with increasing salinity, showing an inverse relationship between these factors. Additionally, the results highlight the complex interplay among these variables demonstrating that soil salinity levels are significantly impacted by climate change indicators, with a negative correlation between precipitation and salinity (r = −0.85, p < 0.001). Recognizing the interconnections between soil salinity, LULC changes, and climate variables is essential for developing comprehensive strategies, such as targeted irrigation practices and land suitability assessments. Earth observation and remote sensing play a critical role in enabling more sustainable and effective soil management in response to both human activities and climate-induced changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.