Invasive alien species (IAS) are considered as the second major threat to biodiversity after habitat destruction worldwide. They are aggressive competitors and dominate an ecosystem where they introduce and cause reduction in indigenous diversity. Invasive plants alter the evolutionary pathways of native species by competition, niche displacement, hybridization, introgression, predation, and ultimately extinction of native species. Biological invasion also results in economic and environmental damage and harm to human health. Invasive plants have an effective reproductive as well as dispersal mechanisms. Most invasive plants produce abundant fruits and seeds that are widely disseminated and remain viable in the soil for several years. Invasive plants may change their seed character in order to adapt themselves to the new environment and facilitate their performance. A study on seed coat sculpturing in invasive alien plants collected from Lesser Himalaya region, Pakistan, was conducted using scanning electron microscope to determine the importance of seed morphological characters as an additional tool for identification. Quantitative characters such as seed length and width, macromorphological characters including color, hilum position, and seed shape, and micromorphological characters of seed including surface patterns and periclinal and anticlinal wall of seeds were studied. Findings at the present indicate that most of the seeds were found spherical followed by ovate and elliptical in shape with smooth surface and showed terminal hilum. Almost reticulate seed patterns were observed in seeds. Majority of seeds showed raised anticlinal walls with protuberance periclinal walls. The seeds of Xanthium strumarium were observed with maximum length of 13 mm and with width of 8 mm. Length by width ratio of seeds was also calculated; it was found that maximum L/W ratio was observed in Sonchus oleraceus L., i.e., 2.66. Seed characters, both macro- and micromorphological, furnish useful data for classification and delimitation of invasive taxa. This study will help to understand the invasion mechanism in plants due to variations in seed surface, shape, and other characters. Adaptive behavior of the seed during the invasion process of the new ecosystem is also elaborated.