Measurement of a jet geometry transition region is an important instrument of assessing the jet ambient medium properties, plasma bulk motion acceleration, parameters of a black hole and location of a jet launching radius. In this work we explore the possibility of a presence of a core shift break, associated with the geometry and jet physical properties transition. We obtain the relations on the core shift offset jump due to a change in a core shift exponent. The condition of a proper frame magnetic field continuity and the core shift break can be used as an instrument to refine the magnetic field estimates upstream the break. This method is applied to the jet in NGC 315. We speculate that the localised in a flow plasma heating either by reconnection or due to particles acceleration at the shock will also lead to a core shift break, but of a different type, than the one observed in NGC 315. We propose to use the multi-frequency core shift measurements to increase the number of sources with a detected jet shape break and to boost the accuracy of assessing the properties of a jet geometry transition region.