Since all diabetes results from reductions in numbers of functional pancreatic beta cells, beta cell regenerative drugs are required for optimal and scalable future diabetes treatment. While many diabetes drugs are in clinical use, none increases human beta cell numbers. We have shown that a combination of the DYRK1A inhibitor, harmine, with the GLP1 receptor agonist, exendin-4, markedly increases human beta cell proliferation in vitro. However, technological limitations have prevented assessment of human beta cell mass in vivo. Here, we describe a novel method that combines iDISCO+ tissue clearing, insulin immunolabeling, light sheet microscopy, and volumetric quantification of human beta cells transplanted into immunodeficient mice. We demonstrate a striking seven-fold in vivo increase in human beta cell mass in response to three months of combined harmine-exendin-4 combination infusion, accompanied by lower blood glucose levels, increased plasma human insulin concentrations and enhanced beta cell proliferation. These studies unequivocally demonstrate for the first time that pharmacologic human beta cell expansion is a realistic and achievable path to diabetes therapy, and provide a rigorous, entirely novel and reproducible tool for quantifying human beta cell mass in vivo.