In mesial temporal lobe epilepsy (mTLE), the correlation between disease duration, seizure laterality, and rostro-caudal location of hippocampal sclerosis has not been examined in the context of seizure severity and global cortical thinning. In this retrospective study, we analyzed structural 3 T MRI from 35 mTLE subjects. Regions of FLAIR hyperintensity (as an indicator of sclerosis)—based on 2D coronal FLAIR sequences—in the hippocampus were manually segmented, independently and in duplicate; degree of segmentation agreement was confirmed using the DICE index. Segmented lesions were used for separate analyses. First, the correlation of cortical thickness with disease duration and seizure focus laterality was explored using linear model regression. Then, the relationship between the rostro-caudal location of the FLAIR hyperintense signal and seizure severity, based on the Cleveland Clinic seizure freedom score (ccSFS), was explored using probabilistic voxel-wise mapping and functional connectivity analysis from normative data. The mean DICE Index was 0.71 (range 0.60–0.81). A significant correlation between duration of epilepsy and decreased mean whole brain cortical thickness was identified, regardless of seizure laterality (p < 0.05). The slope of cortical volume loss over time, however, was greater in subjects with right seizure focus. Based on probabilistic voxel-wise mapping, FLAIR hyperintensity in the posterior hippocampus was significantly associated with lower ccSFS scores (greater seizure severity). Finally, the right hippocampus was found to have greater brain-wide connectivity, compared to the left side, based on normative connectomic data. We have demonstrated a significant correlation between duration of epilepsy and right-sided seizure focus with global cortical thinning, potentially due to greater brain-wide connectivity. Sclerosis along the posterior hippocampus was associated with greater seizure severity, potentially serving as an important biomarker of seizure outcome after surgery.