One of the most sought-after applications of cellular technology is transforming a vehicle into a device that can connect with the outside world, similar to smartphones. This connectivity is changing the automotive world. With the speedy growth and densification of vehicles in Internet of Vehicles (IoV) technology, the need for consistency in communication amongst vehicles becomes more significant. This technology needs to be scalable, secure, and flexible when connecting products and services. 5G technology, with its incredible speed, is expected to power the future of vehicular networks. Owing to high mobility and constant change in the topology, cooperative intelligent transport systems ensure real time connectivity between vehicles. For ensuring a seamless connectivity amongst the entities in vehicular networks, a significant alternative to design is support of handoff. This paper proposes a scheme for the best Road Side Unit (RSU) selection during handoff. Authentication and security of the vehicles are ensured using the Deep Sparse Stacked Autoencoder Network (DS2AN) algorithm, developed using a deep learning model. Once authenticated, resource allocation by RSU to the vehicle is accomplished through Deep-Q learning (DQL) techniques. Compared with the existing handoff schemes, Reinforcement Learning based on the MDP (RL-MDP) has been found to have a 13% lesser decision delay for selecting the best RSU. A higher level of security and minimum time requirement for authentication is achieved using DS2AN. The proposed system simulation results demonstrate that it ensures reliable packet delivery, significantly improving system throughput, upholding tolerable delay levels during a change of RSUs.