Microprocessor (MP) is a complex involved in initiating the biogenesis of microRNAs (miRNAs) by cleaving primary microRNAs (pri-miRNAs). miRNAs are small single-stranded RNAs that play a key role in the post-transcriptional regulation of gene expression. Thus, understanding the molecular mechanism of MP is critical for interpreting the roles of miRNAs in normal cellular processes and during the onset of various diseases. MP comprises a ribonuclease enzyme, DROSHA, and a dimeric RNA-binding protein, which is called DGCR8 in humans and Pasha in Caenorhabditis elegans. DROSHA cleaves stem-loop structures located within pri-miRNAs to generate pre-miRNAs. Although the molecular mechanism of human MP (hMP; hDROSHA-DGCR8) is well understood, that of Caenorhabditis elegans MP (cMP; cDrosha-Pasha) is still largely unknown. Here, we reveal the molecular mechanism of cMP and show that it is distinct from that of hMP. We demonstrate that cDrosha and Pasha measure ∼16 and ∼25 bp along a pri-miRNA stem, respectively, and they work together to determine the site of cMP cleavage in pri-miRNAs. We also demonstrate the molecular basis for their substrate measurement. Thus, our findings reveal a previously unknown molecular mechanism of cMP; demonstrate the differences between the mechanisms of hMP and cMP; and provide a foundation for revealing the mechanisms regulating miRNA expression in different animal species.