Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma. P ancreatic ductal adenocarcinoma is one of the most deadly forms of cancer. In the United States, the rate of mortality is nearly equal to the rate of new diagnoses (1). Early disease detection is rare, and of those patients diagnosed with early-stage disease, only 20% are candidates for surgical resection. Approximately 50% of patients develop highly metastatic disease, for which current treatment regimens provide little increase in longevity (2). Clearly, there is a need for better biomarkers of disease and the identification of new therapeutic targets, particularly for metastatic disease.Human pancreatic cancer develops from preinvasive neoplasias, typically intraepithelial neoplasias (PanINs), although intraductal papillary mucinous neoplasia and mucinous cystic neoplasia can also give rise to adenocarcinoma (3). The majority of pancreatic adenocarcinoma is of ductal origin and contains a large desmoplastic component thought to promote tumorigenesis by modulating the tumor microenvironment. Oncogenic KRAS mutations are found in 90% of human tumors, and they appear in early PanIN (4). The accumulation of additional inactivating driver mutations in P16/CDKN2A, TP53, and SMAD4 occurs with high frequency in later-stage PanIN, and these mutations are likely required for tumor progression to invasive adenocarcinoma.Recent high-throughput sequencing efforts have shown that the majority of somatic point mutations in primary pancreatic adenocarcinoma are missense mutations and that most occur at low frequency (5). Pancreatic cancers exhibit a very unstable genome, and through whole-genome...