Abstract:Marginal fisher analysis (MFA) is a dimensionality reduction method based on a graph embedding framework. In contrast to traditional linear discriminant analysis (LDA), which requires the data to follow a Gaussian distribution, MFA is suitable for non-Gaussian data, and it has better pattern classification ability. However, MFA has the small-sample-size (SSS) problem. This paper aims to solve the small-sample-size problem while increasing the classification performance of MFA. Based on a matrix function dimens… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.