In vitro studies have shown that rapid penetration of bacteria in the entire root canal system may occur after endodontic treatment without a coronal seal. A proper restorative technique is necessary to ensure a coronal seal and protection of the residual dental structure. The aim of this in vitro study was to evaluate the coronal sealing ability of the most relevant clinical materials by means of dye penetration (neutral red dye, Sigma-Aldrich, Germany), through a light spectrometric device, and to establish which one of the tested dental materials possesses the best sealing ability. Forty-two extracted teeth were prepared and used for this experiment; they were sealed with 5 different cements. The flow composite had the best absorbance value with 0.00675 ± 0.00096 (mean ± standard deviation) for monoradicular samples and 0.025 ± 0.00129 for pluriradicular samples. Under the constraints of the present study, both flowable and packable composite materials can be recommended as orifice sealing materials to prevent microleakage in an endodontically treated tooth. To assess the clinical superiority of any material, further in vivo studies are required.