The rhenium-osmium (187Re-187Os) system is a highly versatile chronometer that is regularly applied to a wide range of geological and extraterrestrial materials. In addition to providing geo- or cosmo-chronological information, the Re-Os system can also be used as a tracer of processes across a range of temporal (millennial to gigayear) and spatial scales (lower mantle to cryosphere). An increasing number of sulfide minerals are now routinely dated, which further expands the ability of this system to refine mineral exploration models as society moves toward a new, green economy with related technological needs. An expanding range of natural materials amenable to Re-Os geochronology brings additional complexities in data interpretation and the resultant translation of measured isotopic ratios to a properly contextualized age. Herein, we provide an overview of the 187Re-187Os system as applied to sedimentary rocks, sulfides, and other crustal materials and highlight further innovations on the horizon. Additionally, we outline next steps and best practices required to improve the precision of the chronometer and establish community-wide data reduction procedures, such as the decay constant, regression technique, and software packages to use. These best practices will expand the utility and viability of published results and essential metadata to ensure that such data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR).