2013
DOI: 10.1049/iet-rsn.2011.0142
|View full text |Cite
|
Sign up to set email alerts
|

Marine vessel classification based on passive sonar data: the cepstrum‐based approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
22
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 64 publications
(32 citation statements)
references
References 30 publications
0
22
0
2
Order By: Relevance
“…e l s e v i e r . c o m / l oc a t e / a p a c o u s t AUTEC (Bahamas); Erbe [9], who recorded 66 jet ski pass-bys to characterize their sound; Roth et al [5], who characterized the noise of an icebreaker under the ice of the Arctic Ocean with a sonobuoy that provided hours of recording before it exited the range of the radio link; Lennartsson et al [17], who used hydroacoustic and electromagnetic signatures to create a database of 15 vessels; Das et al [13], who trained a classifier by completing the recorded sound of 6 boats with synthetic data; Bao et al [15], who used recordings of 6 boats to train a classifier; and Yang et al [16] and Zak [2], who trained a neural network with sounds from 5 Polish Navy ships. Many of these authors expressed the desirability of having better databases for their research, but to date no database of recordings has been made available to the research community.…”
Section: Contents Lists Available At Sciencedirectmentioning
confidence: 99%
See 1 more Smart Citation
“…e l s e v i e r . c o m / l oc a t e / a p a c o u s t AUTEC (Bahamas); Erbe [9], who recorded 66 jet ski pass-bys to characterize their sound; Roth et al [5], who characterized the noise of an icebreaker under the ice of the Arctic Ocean with a sonobuoy that provided hours of recording before it exited the range of the radio link; Lennartsson et al [17], who used hydroacoustic and electromagnetic signatures to create a database of 15 vessels; Das et al [13], who trained a classifier by completing the recorded sound of 6 boats with synthetic data; Bao et al [15], who used recordings of 6 boats to train a classifier; and Yang et al [16] and Zak [2], who trained a neural network with sounds from 5 Polish Navy ships. Many of these authors expressed the desirability of having better databases for their research, but to date no database of recordings has been made available to the research community.…”
Section: Contents Lists Available At Sciencedirectmentioning
confidence: 99%
“…The task is challenging, due to the ongoing evolution in engine design, the complexity of sound propagation in the sea (especially in shallow waters) and the frequent presence of high background noise in the sensor. Researchers have applied various signal processing strategies to address these problems: Das et al [13] used spectral characteristics and cepstral coefficients, Wang et al [14] used a bark-wavelet analysis combined with Hilbert-Huang transform, Bao et al [15] exploited the nonlinear features of radiated sound through empirical mode decomposition, Zak [2] used Kohonen neural networks, Yang et al [16] proposed fractal approaches and Lennartsson et al [17] fused sound and electromagnetic signatures for classification purposes.…”
Section: Introductionmentioning
confidence: 99%
“…Any¯gure presents total energy in the sampled aperture, for instance in thē rst aperture ( ¼ 0), after normalizing, the¯rst¯gure constitutes feature out of 23 gures within a vector. The structure of the FNN for these datasets is (23,20,2). Obtained results for di®erent classi¯ers using sonar dataset are shown in Fig.…”
Section: Sonar Datasetmentioning
confidence: 99%
“…Uma outra forma de visualização de dados amplamente utilizadaé a transformada Wavelet [5] e em [6]é apresentada a sua aplicaçãoà classificação de sinais de sonar passivo. Além das técnicas descritas anteriormente, destacam-se também os artigos como [7] que apresentam outras implementações para classificação em sinais de sonar passivo. Em [7], a informação utilizada para o treinamento do classificador foi extraída utilizando os chamados mel-frequency cepstrum (MFC).…”
unclassified
“…Além das técnicas descritas anteriormente, destacam-se também os artigos como [7] que apresentam outras implementações para classificação em sinais de sonar passivo. Em [7], a informação utilizada para o treinamento do classificador foi extraída utilizando os chamados mel-frequency cepstrum (MFC). Os MFC são uma representação do espectro de potência em uma curta janela de aquisição de dados.…”
unclassified