Autoimmune hepatitis lacks an identifiable cause, and its diagnosis requires the exclusion of etiologically defined diseases that resemble it. Insights into its pathogenesis are moving autoimmune hepatitis from an idiopathic to explainable disease, and the goal of this review is to describe the insights that are hastening this transition. Two types of autoimmune hepatitis are justified by serological markers, but they also have distinctive genetic associations (DRB1 and DQB1 genes) and autoantigens. DRB1 alleles are the principal susceptibility factors in white adults, and a six amino acid sequence encoded in the antigen-binding groove of class II molecules of the major histocompatibility complex can influence the selection of autoantigens. Polymorphisms, including variants of SH2B3 and CARD10 genes, may affect immune reactivity and disease severity. The cytochrome mono-oxygenase, CYP2D6, is the autoantigen associated with type 2 autoimmune hepatitis, and it shares homologies with multiple viruses that might promote self-intolerance by molecular mimicry. Chemokines, especially CXCL9 and CXCL10, orchestrate the migration of effector cells to sites of injury and are associated with disease severity. Cells of the innate and adaptive immune responses promote tissue damage, and possible deficiencies in the number and function of regulatory T cells may facilitate the injurious process. Receptor-mediated apoptosis is the principal mechanism of hepatocyte loss, and cell-mediated and antibody-dependent mechanisms of cytotoxicity also contribute. Insights that explain autoimmune hepatitis will allow triggering exogenous antigens to be characterized, risk management to be improved, prognostic indices to be refined, and site-specific therapeutic interventions to emerge.