KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proven challenging and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success due to activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1 thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTPloaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers.Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors.
SignificanceTo date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins G12D, G12V, G12C and G13D.Research.