We recently published a phantom validation of our diaphragm tracking system, DiaTrak, on an Elekta linear accelerator with an integrated cone-beam computed tomography (CBCT) unit for multiple breath-hold volumetric modulated arc therapy of abdominal tumors, where the diaphragm position was compared between digitally reconstructed radiography (DRR) and kilovolt (kV) projection streaming images by template matching. In the present report, the visual feedback of the diaphragm position was added to the reported system. DICOM-RT diaphragm contour data were additionally exported from a treatment planning system to the DiaTrak PC. Following phantom localization by registering the CBCT to the planning CT images, a projected diaphragm contour was overlaid on each DRR image, whereas another two projected diaphragm contours were superimposed on each kV projection cine image every 180 ms after shifting ±5 mm (set as breath-hold tolerance) in the craniocaudal direction during gantry rotation. It was visually confirmed that the projected diaphragm surface was observed within the two contour lines on the kV cine window. The diaphragm registration errors of the localized phantom were also calculated based on image cross-correlation between the DRR and the projection cine images every 180 ms. It was found that the mean diaphragm registration error was -0.29 mm with a standard deviation of 0.32 mm during the gantry rotation. In conclusion, a new interface for the 5 mm tolerance check was proposed to provide direct visual feedback, thereby giving a sense of assurance to the attending radiotherapy technologists. The calculated diaphragm registration errors were relatively small compared to the tolerance of 5 mm, and therefore it is considered clinically acceptable.