The over-expression of c-erbB-2/ HER-2, a receptor tyrosine kinase, correlates with poor prognosis in patients with breast and ovarian cancer. In the human breast cancer cell line, MDA-MB-435, c-erbB-2 overexpression results in increased chemoinvasion and higher metastatic properties in nude mice. However, the mechanisms by which c-erbB-2 increases the malignant potential of cells remains unclear. We have determined that over-expression of c-erbB-2 in MDA-MB-435 cells, and in some additional breast cancer cell lines, is associated with graphic increases in mRNA and protein levels of the actin bundling protein fascin. Heightened fascin expression has been observed in other systems to result in greatly increased cell motility, and indeed, our work employing semi-automated time-lapse microscopy demonstrates that MDA-MB-435 cells over-expressing c-erbB-2 exhibit signi®cantly heightened cellular dynamics and locomotion, while visualization of bundled micro®laments within ®xed cells revealed enhanced formation of dendritic-like processes, microspikes and other dynamic actin based structures. To address the means by which c-erbB-2 over-expression might result in elevated fascin levels, we identi®ed multiple perfect match TCF and NF-kB consensus sites in fascin's promoter and ®rst intron, which appeared consistent with the greater endogenous transcriptional activities of TCF and NF-kB in c-erbB-2 over-expressing MDA-MB-435 cells. While such transcriptional modulation may occur in the context of the intact gene/chromatin, subsequent tests using reporter constructs did not support involvement of these signaling pathways. In conclusion, highly increased fascin levels were observed in MDA-MB-435 over-expressing c-erbB-2, likely contributing to these cells' altered actin dynamics, and increased cell motility and malignancy. Studies in progress aim to discern the means by which c-erbB-2 over-expression leads to transcriptional activation of the fascin gene.