The Internet of Things (IoT) is a new heterogeneous system integrated by the various end users (sensors and terminals) with different technologies. However, the limiting factor is bandwidth in the IoT due to the exploding end users and the network bandwidth requirements. A novel IoT model, which integrates the power-line carrier (PLC) and the wireless network (WN), is proposed to solve the bandwidth problem from the architecture, especially in the areas lacking network facilities. In addition, we exploit an effective virtual layer (EVL) which allows the different end users to access the system model seamlessly. Then, the attractor selection algorithm based on Markov chain (MASA) is employed to select an optimal path among the PLC or WN. The simulation results demonstrate that the proposed system model has the smaller average queuing delay than other algorithms and makes the model more stable and robust.