In contrast to the usual quantum systems which have at most a finite number of open spectral gaps if they are periodic in more than one direction, periodic quantum graphs may have gaps arbitrarily high in the spectrum. This property of graph Hamiltonians, being generic in a sense, inspires the question about the existence of graphs with a finite and nonzero number of spectral gaps. We show that the answer depends on the vertex couplings together with commensurability of the graph edges. A finite and nonzero number of gaps is excluded for graphs with scale invariant couplings; on the other hand, we demonstrate that graphs featuring a finite nonzero number of gaps do exist, illustrating the claim on the example of a rectangular lattice with a suitably tuned δ-coupling at the vertices.Keywords: periodic quantum graphs, gap number, δ-coupling, rectangular lattice graph, scale-invariant coupling, Bethe-Sommerfeld conjecture, golden mean.Quantum graphs [1] have attracted much attention both from the practical point of view as models of nanostructures as well as a tool to study the properties of quantum systems with a nontrivial topology of the configuration space. The topological richness of quantum graphs allows them to exhibit properties different from those of the 'usual' quantum Hamiltonians; examples are well known, for instance, the existence of compactly supported eigenfunctions on infinite graphs [1, Sec. 3.4] or the possibility of having flat bands only as is the case for magnetic chain graphs with a half-of-the-quantum flux through each chain element [2].In this letter, we are going to consider another situation where quantum graphs are known to behave unusually. Our problem concerns the gap structure of the spectrum of periodic quantum graphs. Recall that the finiteness of the open gap number for periodic quantum systems in dimension two or more was conjectured in the early days of quantum theory by Bethe and Sommerfeld [3]. The validity of the conjecture was taken for granted even if its proof turned out to pose a mathematically difficult problem. It took a long time before it was rigorously established for the 'usual' periodic Schrödinger operators [4][5][6][7][8]. Nevertheless, the situation appears to be different for quantum graphs, as we will see below.The traditional reasoning behind the Bethe-Sommerfeld conjecture relies on the behavior of the spectral bands identified with the ranges of the dispersion curves or surfaces which, in contrast to the one-dimensional situation, typically overlap, making opening of gaps more and more difficult as we proceed to higher energies. The situation with graphs might be similar [1, Sec. 4.7] but the spectral behavior need not be the same, one reason being the possibility of resonant gaps. The existence of gaps coming from a graph decoration was first observed in the discrete graph context [9] and the effect is present for metric graphs as well [1, Sec. 5.1]. In addition, the recently discovered universality property of periodic graphs [10], valid in the generic ...