In this work, we propose a blockchain-based solution for securing robot-to-robot communication for a task with a high socioeconomic impact—information gathering. The objective of the robots is to gather maximal information about an unknown ambient phenomenon such as soil humidity distribution in a field. More specifically, we use the proof-of-work (PoW) consensus protocol for the robots to securely coordinate while rejecting tampered data injected by a malicious entity. As the blockchain-based PoW protocol has a large energy footprint, we next employ an algorithmically-engineered energy-efficient version of PoW. Results show that our proposed energy-efficient PoW-based protocol can reduce energy consumption by 14% while easily scaling up to 10 robots.