The Leaf Area Index (LAI) is a critical parameter that sheds light on the composition and function of forest ecosystems. Its efficient and rapid measurement is essential for simulating and estimating ecological activities such as vegetation productivity, water cycle, and carbon balance. In this study, we propose to combine high-resolution GF-6 2 m satellite images with the LESS three-dimensional RTM and employ different machine learning algorithms, including Random Forest, BP Neural Network, and XGBoost, to achieve LAI inversion for forest stands. By reconstructing real forest stand scenarios in the LESS model, we simulated reflectance data in blue, green, red, and near-infrared bands, as well as LAI data, and fused some real data as inputs to train the machine learning models. Subsequently, we used the remaining measured LAI data for validation and prediction to achieve LAI inversion. Among the three machine learning algorithms, Random Forest gave the highest performance, with an R2 of 0.6164 and an RMSE of 0.4109, while the BP Neural Network performed inefficiently (R2 = 0.4022, RMSE = 0.5407). Therefore, we ultimately employed the Random Forest algorithm to perform LAI inversion and generated LAI inversion spatial distribution maps, achieving an innovative, efficient, and reliable method for forest stand LAI inversion.