2019
DOI: 10.1016/j.jallcom.2019.03.173
|View full text |Cite
|
Sign up to set email alerts
|

Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

3
18
0
5

Year Published

2019
2019
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 71 publications
(26 citation statements)
references
References 75 publications
3
18
0
5
Order By: Relevance
“…Further doping with Co, strong ferromagnetism is established and the NiMnTi(Co) MSMAs is obtained . Liu et al reported a relative high MT temperature in NiMnTi(Co), which would adversely affect RT refrigeration . In our previous study, it was proved that the substitution Co with Fe would significantly reduce the MT temperature .…”
Section: Introductionmentioning
confidence: 83%
“…Further doping with Co, strong ferromagnetism is established and the NiMnTi(Co) MSMAs is obtained . Liu et al reported a relative high MT temperature in NiMnTi(Co), which would adversely affect RT refrigeration . In our previous study, it was proved that the substitution Co with Fe would significantly reduce the MT temperature .…”
Section: Introductionmentioning
confidence: 83%
“…合适成 分的该系列合金马氏体相变既属于热弹性相变, 又属 于铁磁性相变, 因此既可以被温度或应力诱导, 也可 以被磁场驱动. 在温度、磁场等外界因素的激励下, 合金可以发生铁磁奥氏体和弱磁马氏体之间的马氏体 相变(或逆马氏体相变), 晶体结构转变和磁性相变强 烈耦合, 因此, 相变附近表现出很大的磁热效应 [2][3][4] , 同 时 也 具 有 很 大 的 机 械 热 效 应 ( 弹 热 、 压 热 ) 、 巨 磁 电阻、磁致应变、交换偏置、动力学囚禁等物理效 应 [2][3][4][10][11][12][13][14][15][16][17][18][19][20][21][22][23] , 从而在固态制冷、磁激励、人工智能等前 沿和新兴领域都极具应用前景.…”
Section: 在众多一级磁相变材料中 Ni-mn基heusler合金unclassified
“…人们在对Ni-Mn基FSMAs研究的过程中, 通过多 种途径调控实现铁磁/弱磁性马氏体相变, 比如过渡/ 主族元素取代 [2][3][4][8][9][10]14,15,[18][19][20][21][22][23] 、热处理 [11] 、改变快淬 速度 [13] 、间隙位原子掺杂 [16,17] 等. 人们也提出各种机 制解释马氏体相变调控的物理机理, 比如应力弛 豫 [11] 、反位缺陷 [11] 、Mn-Mn间距 [2] 、价电子浓度 [8] 、 第二相析出 [11,13] 等.…”
Section: 在众多一级磁相变材料中 Ni-mn基heusler合金unclassified
See 1 more Smart Citation
“…More recently, Han et al [32,33] and Wu et al [34] studied the phase competition between cubic and tetragonal structures in a series of conventional Heusler compounds Pd 2 YZ (Y = Co, Fe, Mn; Z = B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb) and all-d-metal Heusler compounds X 2-x Mn 1+x V (X = Pd, Ni, Pt, Ag, Au, Ir, Co; x = 1, 0) and Zn 2 MMn (M = Ru, Rh, Pd, Os, Ir) and found that many of them also exhibit tetragonal phases, especially the most of Pd 2 Co-based Heusler alloys. Compared with the cubic structures, the tetragonal ones have several special properties, like large perpendicular magnetic anisotropy [35][36][37] and ferromagnetic shape memory behavior [38][39][40][41][42][43], which are very important for the development of spin-transfer torque magnetic random-access memory, ferromagnetic shape memory alloys and other spintronic applications [29,[44][45][46].…”
Section: Introductionmentioning
confidence: 99%