The net of dry valleys, gullies and shallow hollows is typical for the East European Plain. Dense vegetation usually covers their bottoms and slopes, so the modern erosion there is negligible in the pristine conditions. This erosion landscape formed in periglacial conditions during the terminations of the last two glaciations. The same kind of the erosion landscape is typical for the Arctic regions, especially for the Yamal, Gydan, and Tazovsky peninsulas. The size and the density of such valleys and gullies are quite similar to those existing on the East European Plain, but these erosion features are active there, especially in the conditions of natural or anthropogenic deterioration of the vegetation cover. As the density of dry valley network is an indicator of hydrological conditions in the river basin, the landscapes of the Arctic regions can be used as the modern analogs of the territories with the past periglacial erosion.The recent hydrological characteristics of the west-central Yamal Peninsula were used to estimate the parameters of erosion network at the Khoper River basin, formed in periglacial conditions. For these purposes gully erosion and thermoerosion model GULTEM was verified and calibrated based on the observation of the modern processes on the Yamal Peninsula. The meteorological characteristics were taken from ERA-Interim Reanalysis grid. To calculate the flow characteristics a synthetic hydrological model was used. These verified and calibrated models were used to find the most suitable characteristics of climate and vegetation cover, which can explain the structure and density of the Perepolye dry valley in the Khoper River basin. This dry valley with the main trunk length of 6400 m was formed at the end of the Late Valdai Glaciation (MIS 2). The conditions required for the formation of a periglacial gully of such length were estimated with the GULTEM model. The critical velocity of erosion initiation was within the range 0.8-0.9 m/s, and the surface runoff depth was close to the recent one on the Yamal Peninsula (330 mm). The system of shallow hollows in the Perepolye catchment (the gullies formed at the end of the Moscow Glaciation, MIS 6) is denser and longer than the dry valley system, and the modelling estimates showed that the surface runoff during that period was almost 3.3 times more than the recent one on the Yamal Peninsula.