2020
DOI: 10.1051/e3sconf/202020006007
|View full text |Cite
|
Sign up to set email alerts
|

Mask R-CNN for rock-forming minerals identification on petrography, case study at Monterado, West Kalimantan

Abstract: This paper explores the experiment of Deep Learning method using Mask Region-Convolutional Neural Network (Mask R-CNN) to identify rock-forming minerals on thin section images from petrographic observation in igneous rocks, which are plagioclase, quartz, K-feldspar, pyroxene, and hornblende. Train and validation dataset consisted of 2 quartz diorites and 1 granodiorite from Monterado, West Kalimantan, 1 quartz diorite and 1 granite from Nangapinoh, West Kalimantan, and 7 andesite and 2 basalts from Bangli, Bal… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
references
References 11 publications
0
0
0
Order By: Relevance