<span lang="EN-US">Efficient and accurate coronavirus disease (COVID-19) surveillance necessitates robust identification of individuals wearing face masks. This research introduces the sophisticated face mask dataset (SFMD), a comprehensive compilation of high-quality face mask images enriched with detailed annotations on mask types, fits, and usage patterns. Leveraging cutting-edge deep learning models—EfficientNet-B2, ResNet50, and MobileNet-V2—, we compare SFMD against two established benchmarks: the real-world masked face dataset (RMFD) and the masked face recognition dataset (MFRD). Across all models, SFMD consistently outperforms RMFD and MFRD in key metrics, including accuracy, precision, recall, and F1 score. Additionally, our study demonstrates the dataset's capability to cultivate robust models resilient to intricate scenarios like low-light conditions and facial occlusions due to accessories or facial hair.</span>